
Understanding and Exploring the Network with
Stochastic Architectures

Zhijie Deng, Yinpeng Dong, Shifeng Zhang, Jun Zhu∗
Dept. of Comp. Sci. & Tech., Institute for AI, BNRist Center

Tsinghua-Bosch Joint ML Center, THBI Lab, Tsinghua University, Beijing, 100084 China
{dzj17,dyp17,zhangsf15}@mails.tsinghua.edu.cn, dcszj@mail.tsinghua.edu.cn

Abstract

There is an emerging trend to train a network with stochastic architectures to enable
various architectures to be plugged and played during inference. However, the
existing investigation is highly entangled with neural architecture search (NAS),
limiting its widespread use across scenarios. In this work, we decouple the training
of a network with stochastic architectures (NSA) from NAS and provide a first
systematical investigation on it as a stand-alone problem. We first uncover the char-
acteristics of NSA in various aspects ranging from training stability, convergence,
predictive behaviour, to generalization capacity to unseen architectures. We iden-
tify various issues of the vanilla NSA, such as training/test disparity and function
mode collapse, and further propose the solutions to these issues with theoretical
and empirical insights. We believe that these results could also serve as good
heuristics for NAS. Given these understandings, we further apply the NSA with our
improvements into diverse scenarios to fully exploit its promise of inference-time
architecture stochasticity, including model ensemble, uncertainty estimation and
semi-supervised learning. Remarkable performance (e.g., 2.75% error rate and
0.0032 expected calibration error on CIFAR-10) validate the effectiveness of such
a model, providing new perspectives of exploring the potential of the network with
stochastic architectures, beyond NAS.

1 Introduction

Deep neural networks (DNNs) are the de facto methods to model complex data in a wide spectrum
of practical scenarios [12, 36, 38, 40]. The design of neural architectures has always been an active
research topic in DNNs, aiming to discover effective connectivity patterns for building networks, in
manually designed [33, 14, 43, 13, 51, 32] or automatic [52, 31, 53, 22] manners. Recent research
even permits us to train a network without a fixed architecture [3, 45, 42, 1, 11], i.e., at every training
iteration, an architecture sample is randomly drawn from an architecture distribution and used to
guide the training of network weights (see Fig. 1 for more insights), which is also known as the
weight sharing technique in neural architecture search (NAS)1.

Though the weight-sharing network with stochastic architectures is promising, its usage is closely
encoupled with NAS to relieve the burden of training thousands of networks. Indeed, the stochasticity
over the architectures inside the model itself is also of interest, in consideration of multiple aspects:
(i) In the spirit of stochastic regularization, the introduced architecture variability helps to regularize
deep models from co-adaptation and over-fitting, in a more structured and global style than standard
stochastic regularizations applied on local feature maps or weights [35, 39, 19, 8]. (ii) The trained
∗Corresponding author.
1In NAS, the distribution where the stochastic architectures are sampled may also be updated w.r.t. validation

data simultaneously, with the purpose of discovering outperforming architectures.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

conv

conv

conv

input

output
(a) (b) (d)(c)

conv

conv

conv

conv

input

output

conv

conv

conv

conv

input

output

conv

conv

conv

conv

input

output

conv

Figure 1: (Best viewed in color.) We plot four convolutions due to space limitation. (a)-(c): Diverse architectures
lying in the wiring-based space. Note that (c) actually equals to the residual connections, and refer to [48] for the
details of such equivalence. (d): The network with stochastic architecture is suitable for various architectures, and
randomly activates an architecture at each training/test step. See Appendix A for practically used architectures.

weight-sharing network can adopt diverse architectures, seen or even unseen (as shown in Sec. 4.2)
during training, to perform inference, enabling us to leverage the expressivity of various architectures
with training only one set of weights. The predictions provided by different architectures can be
further assembled or used to calculate uncertainty estimates, making the prediction model more
accurate, robust, and calibrated.

In this work, we disentangle the Network with Stochastic Architectures (referred to as NSA) from
the task of NAS, and provide a first systematical investigation on NSA as a stand-alone problem
beyond NAS. At first, we investigate the un-identified characteristics and limitations of NSA. Through
thorough empirical analyses, we have uncovered the training/test disparity and mode collapse issues
of the vanilla NSA, which are non-trivial and neglected by existing works. We then develop several
improvements to address these problems with theoretical and empirical insights. Furthermore, we also
observe some remarkable features of NSA and our improved versions, such as good generalization
capacity to unseen architectures, which could be intentionally leveraged to build NSA with enhanced
predictive performance and hopefully benefit existing NAS methods. Finally, to fully exploit its
potentials from inference-time stochastic architectures, we apply the NSA with our improvements
into several challenging scenarios. Experimental results on multiple tasks testify the effectiveness of
NSA. In summary, our contributions are as follows:

1. We provide a systematical investigation on the network with stochastic architectures (NSA).

2. We uncover a wide range of characteristics of NSA, identify two issues of it, i.e., training/test
disparity and mode collapse, and propose two techniques to address the issues.

3. We extend NSA into scenarios like model ensemble, uncertainty estimation, and semi-
supervised learning, to enjoy the benefits from the stochasticity over the architectures.
Extensive experiments prove the effectiveness of NSA in these scenarios.

2 NSA: Network with Stochastic Architectures

Before delving into the details of understanding and exploring NSA, we describe its basic definition
and motivation, as well as its training and test principles. Then we briefly present its building details.

What is NSA? Basically, NSA is defined as a network with a fixed set of weights, but stochastically
sampled architectures in both training and inference, distinct from the regular DNNs. To meet such a
definition, the space, where we sample architectures, is usually required to be well structured [30,
22, 44], so that the shared weights can be architecture compatible. There are two popular structured
architecture spaces: (i) in a sub-graph view – different architectures are different sub-graphs of a super
graph with redundant computational branches [30, 22]; (ii) in a wiring view – different architectures
activate different skip-connections among a fixed number of computational operations [44, 48] (see
Fig. 1 for the details). In this work, we consider the latter as: (i) the operation redundancy in the
former may probably limit the convergence of network weights; and (ii) the latter has a higher
alignment with the classic ResNets [12] and DenseNets [14]. We parameterize the architecture as the
discrete adjacency matrix of the directed graph on the fixed set of operation nodes.

2

Why do we need a NSA? At first, the architecture stochasticity is likely to regularize the training
properly, in light of the stochastic regularization scheme. A more promising aspect is that given a
trained NSA, we can evaluate the incoming data with diverse architectures thanks to the plug-and-play
nature of the model for neural architectures. This enables us not only to evaluate a broad range of
architectures with only the training efforts of once, but also to exploit the diverse predictive behaviors
of different architectures, which are thought to carry specialized inductive bias. Moreover, the
predictions from different architectures can further be assembled or integrated to calculate uncertainty
estimates, giving rise to a more accurate, robust, and calibrated prediction model.

Training principles. To train a NSA to predict well under various architectures, we minimize the
expected empirical risk w.r.t. the variable architecture for weight updating, as suggested in [1, 45, 3,
11]. Specifically, we assume that the architecture α follows a distribution p(α), and we have access
to a training set D = {(xi, yi)}ni=1 of size n, where xi ∈ Rd and yi ∈ Y denote the data and label,
respectively. The loss function for training is formulated as:

L(w) = E
α∼p(α)

[1
n

∑
(xi,yi)∈D

− log p(yi|xi;w,α)
]
≈ 1

|B|
∑

(xi,yi)∈B

− log p(yi|xi;w,α), α ∼ p(α), (1)

where w denotes the weights, B represents a stochastic batch of data, and p(y|xi;w,α) is the
predictive distribution. Note that the sampled architecture is typically used for the whole batch [45, 3].
Given this, we can iteratively perform stochastic gradient descent (SGD) for weight training.2

Test principles. Based on a trained NSA, we can predict for the validation data with diverse
architectures seen or even unseen (we will justify this in Sec. 4.2) during training, due to its high
compatibility with various architectures. The accuracy on the validation data Dval of a specific
architecture α0 takes the form of A(α0) = 1

|Dval|
∑

(xi,yi)∈Dval
I
(

arg maxy p(y|xi;w,α0) = yi
)
.

Unlike regular DNNs, we can also ensemble the predictions from T architectures {αt}Tt=1 for
performance estimation: Aens = 1

|Dval|
∑

(xi,yi)∈Dval
I
(

arg maxy

(
1
T

∑T
t=1 p(y|xi;w,αt)

)
= yi

)
.

Note that NAS always takesA(α0) as a proxy of α0’s stand-alone performance (i.e., the performance
of the architecture with individual weights trained from scratch) to guide architecture search.

A refined training space of architecture. To avoid meaningless architecture samples, we adopt a
knowledge guided sampler, i.e., the Erdős-Rényi (ER) [6] model with 0.3 probability to activate any
one of the possible skip-connections, suggested by [44], to sample from the whole space. We also
demand there is an overall chain-like connection. Before training, we refine the broad architecture
space by randomly sampling a subset of it in the size of S with the sampler. The S architectures
span the training space, and we uniformly choose one of them at each iteration during training
(corresponding to p(α) in Eq. (1)). We apply such a refined training space of architectures for two
reasons: (i) though the original architecture space is huge (e.g., > 1010), the architectures that could
be sampled and used in training are limited owing to the limited training steps (e.g., < 105); (ii) by
fixing the training space at a certain size, we can further examine if training with more architectures
harms the convergence of NSA and can the NSA trained under a limited number of architectures
generalize to unseen architectures, as revealed in Sec. 3 and Sec. 4.2, respectively.

Network details. By convention, on the CIFAR-10 [16] task, the deployed network is divided into 3
stages in different spatial sizes, each containing 8 convolution modules, and we randomly sample an
individual architecture for each stage. We use wide convolutions with the widening factor of 10 for
feature extraction, inspired by their success in Wide Residual Networks (WRNs) [49]. A uniform
sum precedes each convolution module, i.e., a ReLU-Conv-BN triplet, to aggregate incoming feature
maps. We use explicit down-sampling modules between stages to make the feature maps in every
stage have the same size and hence can be freely connected. As a note, the residual connections also
lie in the space (shown in Fig. 1(c)), allowing us to implement a comparable WRN as a baseline
(denoted as WRN-28-10†). The training cost of NSA is almost identical to that of WRN-28-10†,
taking about 0.6 GPU day on a GTX 2080Ti for 300 training epochs.

3 Training/test Disparity of NSA

Though NSA has been widely deployed in NAS, the focus was mainly placed on evaluating the
architecture candidates given a trained NSA, while leaving several important characteristics of NSA

2We view p(α) as fixed for simplicity despite updating it w.r.t. validation results at the same time is feasible.

3

0 50 100 150 200 250 300
Epochs

20

40

60

80

100

A
cc

ur
ac

y Train Accuracy
Test Accuracy
Train Loss
Test Loss

0.0

0.5

1.0

1.5

2.0

2.5

L
os

s

(a) S = 500

0 50 100 150 200 250 300
Epochs

20

40

60

80

100

A
cc

ur
ac

y Train Accuracy
Test Accuracy
Train Loss
Test Loss

0.0

0.5

1.0

1.5

2.0

2.5

L
os

s

(b) S = 5000

75 80 85 90 95
Accuracy

0

10

20

30

40

50

Fr
eq

ue
nc

y

Test mode accuracy
Train mode accuracy

(c) S = 500

75 80 85 90 95
Accuracy

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y

Test mode accuracy
Train mode accuracy

(d) S = 5000

Figure 2: (a)-(b): The training curves of NSA trained under architecture spaces of size 500 and 5000. (c)-(d):
The histograms for the validation accuracy of 100 random architectures (seen during training) with the training
mode of BN turned on/off.

unexplored, such as the training stability, convergence, and sensitivity to the training architecture
space size. In this section, we examine these previously ignored aspects of NSA and present the key
observation of sharp training/test disparity. We further draw theoretical insights from the mechanism
of Batch Normalization (BN) [15] to explain this phenomenon and propose solutions accordingly.

We start by examining NSA on the typical CIFAR-10 image classification task, with the number
of used architectures S during training varying from 500, to 5000 and 50000. We calculate the
accuracy and loss of every batch of data given a batch-specific random architecture, according to
Eq. (1), and take the average as the whole dataset accuracy and loss. We draw the training curves
in Fig. 2(a)-(b) and Appendix B, respectively. Surprisingly, the training of NSA is stable and well
converged in all cases, as well exhibiting tolerance to the variability of the training architecture space.
This is somewhat counter-intuitive as there seems to be higher architecture variability in a wider
space, rendering the data-fitting harder. We speculate that the well structured architecture space yields
inherently consistent architecture samples, resulting in such results.

A much more attractive part is the test loss and test accuracy curves, owing to its severe instability.
Typically, the training and test disparity of a DNN model is caused by the inconsistency inside BN –
during training, batch specific statistics are used to normalize features while in test, their exponential
moving average (ema) takes over to make the inference stable and behavior independent. To confirm
this, we calculate the validation accuracy of 100 random architectures with the training mode of BN
turned on or off, and plot their histograms in Fig. 2(c)-(d). The visualization echoes our speculation:
the model behaviour becomes significantly unstable when replacing the training mode with the test
one. This phenomenon is also found by some recent works [47, 46]. It may also explain why methods
in NAS tend to evaluate the architectures with the training mode on [22, 45], though the validation
results given by training-mode BN are not pretty reliable.

To figure out the underlying reasons of such a problem, we first of all draw some insights from the
formulation of BN. Given a mini-batch of |B| instances, we consider a single channel of the batch
features {h1,α, h2,α, ..., h|B|,α}, with the assumption that the spatial dimension is 1 for simplicity.
α in the subscript refers to the used architecture for the batch. BN works by applying the following
transformation on the features (the affine transformation is omitted):

µ =
1

|B|

|B|∑
i=1

hi,α, σ
2 =

1

|B|

|B|∑
i=1

(hi,α − µ)2, ĥtrain
i,α =

hi,α − µ√
σ2 + ε

, ĥtest
i,α =

hi,α − µema√
σ2

ema + ε
. (2)

Then we look at the variance of µ, since that the gap between µ and the constant µema is
the major discrepancy between training and test, and obtain: var(µ) = 1

|B|2 (
∑|B|

i=1 var(hi,α) +∑
i 6=j cov(hi,α, hj,α)). Intuitively, the features generated with the same architecture α are highly

correlated, because the architecture commonly shifts the features toward a certain direction. This
makes the second term of the decomposition of var(µ) undesirably large, given that it is a summation
over |B| × (|B| − 1) terms. So, NSA uses batch statistics varying across architectures during training,
but uses architecture agnostic ones during test, bringing inconsistency and hence unstable prediction.

With the root of the problem diagnosed, we gain the opportunities to solve it. To reduce the correlation
between the features in a batch, a straight-forward solution is to reduce the correlation between the
architectures which generate these features. Continuing from this, we replace the batch specific

4

0 50 100 150 200 250 300
Epochs

20

40

60

80

100

A
cc

ur
ac

y Train Accuracy
Test Accuracy
Train Loss
Test Loss

0.0

0.5

1.0

1.5

2.0

2.5

L
os

s

(a) S = 500

0 50 100 150 200 250 300
Epochs

20

40

60

80

100

A
cc

ur
ac

y Train Accuracy
Test Accuracy
Train Loss
Test Loss

0.0

0.5

1.0

1.5

2.0

2.5

L
os

s

(b) S = 5000

94.0 94.5 95.0 95.5 96.0 96.5
Accuracy

0

2

4

6

8

10

Fr
eq

ue
nc

y

Test mode accuracy
Train mode accuracy

(c) S = 500

93.5 94.0 94.5 95.0 95.5 96.0 96.5
Accuracy

0

2

4

6

8

10

Fr
eq

ue
nc

y

Test mode accuracy
Train mode accuracy

(d) S = 5000

Figure 3: (a)-(b): The training curves of NSA-i trained under architecture spaces of size 500 and 5000. (c)-(d):
The histograms for the validation accuracy of 100 random architectures tested upon the trained NSA-i, with the
training mode of BN turned on/off.

architectures in Eq. (1) with instance specific ones3:

L∗(w) =
1

|B|
∑

(xi,yi)∈B

− log p(yi|xi;w,αi), αi ∼ p(α), i = 1, ..., |B|. (3)

Then, the batch mean is re-calculated as µ∗ = 1
|B|
∑|B|

i=1 hi,αi
, with variance var(µ∗) =

1
|B|2 (

∑|B|
i=1 var(hi,αi

) +
∑

i 6=j cov(hi,αi
, hj,αj

)). cov(hi,αi , hj,αj) should be small given that the
architecture for each data is i.i.d., thus ideally we can reduce the variance of the batch mean by one
order of magnitude. We refer to network trained with Eq. (3) as improved NSA (NSA-i), and take
NSA-i as the default model in the following evaluation for its advantages.

We provide the training curves and validation results of NSA-i in Fig. 3. As expected, in Fig. 3(a)-
(b), the test results are much more stable and consistent with the training ones. Surprisingly, in
Fig. 3(c)-(d), test-mode BN induces notably better validation accuracy, implying the weaknesses of
training-mode BN: the training statistics commonly cannot approximate the whole dataset ones well.
A direct comparison on var(µ) between NSA and NSA-i is deferred to Appendix C.

At last, we have done another interesting study – ranking 100 random architectures w.r.t. their
validation accuracy with the training mode of BN turned on or off, and calculating the Spearman rank
correlation [27] between the two modes (the higher, the more correlated). The results of NSA are 0.33,
0.37, and 0.258 with the training space containing 500, 5000, and 50000 architectures, respectively.
As a comparison, NSA-i offers 0.588, 0.395, and 0.615. This testifies that the architecture assessment
provided by NSA, trained with batch specific architectures, is indeed less stable than that from NSA-i.
This also highlights the necessity of solving the BN problem in NAS (either with the investigated
architecture space or with the popular DARTS space [22]), and challenges the effectiveness of using
training-mode BN for architecture evaluation, as in almost all efficient NAS methods.

4 Inference-time Properties of NSA

In this section, we use the trained NSA for inference, and aim to analyze some properties of its
inference-time behaviour. We concern (i) Do diverse architectures behave diversely given shared
weights? (ii) Can NSA trained under a limited architecture space generalize to unseen architectures
in the broad, raw architecture space? The two aspects are of central importance for both architecture
evaluation and ensemble with various architectures. We answer the two questions in the following.

4.1 Mode Collapse of Diverse Architectures

As stated, the network architecture is capable to carry specific inductive bias, thus different architec-
tures may deliver diverse predictions for the same data. Such predictive diversity is comprehensively
helpful to the model, ranging from enhancing performance [20] and robustness [29], to yielding more
calibrated uncertainty estimates [41]. But can the predictive diversity still be held given only a set
of shared weights in NSA? Intuitively, the answer is not positive, because the weights in NSA are
architecture agnostic to permit the trained weights generalize across the whole architecture space. The

3Using instance specific architectures is feasible to implement when using the architecture space of [44], as
done in this work, but is not directly implementable in the sub-graph based space, left as a future work.

5

expectation w.r.t. architecture in the training loss forces the weights to be robust against architecture
variability, and the model to predict consistently under diverse architectures. Thus, the network would
seemingly yield architecture agnostic prediction, referred to as the function mode collapse, and lose
the advantages of exploring diverse modes of prediction behaviour from multiple architectures.

Based on these speculations, we launch a set of experiments to identify whether mode collapse
indeed exists or not. A realistic barrier is that the prediction behaviour of a network model can
hardly be numerically measured, owing to its black-box nature. Drawing inspiration from the
fact that model ensemble frequently benefits from diverse base predictors [20], we opt to use the
ensemble performance gain as a metric, to estimate the behaviour diversity of different architectures.
Specifically, we test on the NSA-i model, given its supremacy over naive NSA, trained with S = 500
architectures. We let the ensemble number of architectures T range from 1 to 500, and draw the
change of ensemble accuracy w.r.t. T in Fig. 4.

0 100 200 300 400 500
Number of architectures to ensemble

0.961

0.963

0.965

0.967

A
cc

ur
ac

y

NSA-i
NSA-id

Figure 4: The change of the ensem-
ble performance w.r.t. the number of
architecture used to ensemble.

As shown, the ensemble performance gain is limited (almost
0.003) and stops increasing quickly. Such results substantiate
that there are moderate levels of function mode collapse among
various architectures when using a shared set of weights.

We know the source of this issue is the shared weights are archi-
tecture agnostic, then as a solution, we can augment the shared
weights with an extra set of architecture dependent weights, to
enjoy the benefits from more diverse function modes of different
architectures4. The extra weights of every architecture should
be low-dimensional, because at per training step, only the extra
weights of several architectures (no more than batch size consid-
ering Eq. (3)) would be updated. If not, they will not be trained
thoroughly. Under this consideration, we employ architecture
dependent aggregation and BN in NSA-id, following the style of
the class-conditional BN widely used in conditional generative modeling [26]. Namely, we build an
individual set of trainable aggregation coefficients and BN affine parameters for each architecture,
and select the corresponding set to the architecture for calculation at per step. We refer to NSA-i with
architecture dependent weights as NSA-id.

Then, we assess the mode collapse level of NSA-id with the aforementioned ensemble based evalua-
tion. To compare with NSA-i fairly, we use only the architecture conditional aggregations, which
introduces negligible extra weights, in this experiment. We exhibit the results in Fig. 4. As expected,
the ensemble gain is more obvious compared to NSA-i5. However, identical to NSA-i, NSA-id
cannot enjoy further ensemble gain after seeing almost 20 architectures. We think it is reasonable: as
discussed, the main weights of the network are architecture agnostic, rendering it hard to exhaustively
diversify the predictions of various architectures with only few additional weights. To summarize,
mode collapse indeed occurs and employing architecture conditional weights mitigates it.

4.2 Generalization Capacity to Unseen Architectures

As we stated, the inference-time architecture stochasticity of NSA is desirable, making us capable of
exploiting the predictive power of various architectures. But does the trained NSA only accommodate
the architectures seen during training? Can the trained NSA generalize to unseen architectures for
broader exploration? Here, we offer answers for them with both qualitative and quantitative evidence.

First, we calculate the test accuracy of 200 randomly sampled architectures based on the NSA-i
models trained under various spaces (as shown in Appendix D, the naive NSA models with training-
mode BN would provide similar results). A half of the 200 architectures are seen during training
while the other half not. We depict the test accuracy histograms of the two types of architectures in
Fig. 5. An intuitive conclusion could be drawn is that with the training architecture space large enough
(i.e., S ≥ 500), the trained NSA-i can present matched performance on the unseen architectures with

4Of course, introducing architecture dependent weights will hinder the trained weights from generalizing to
unseen architectures as we can only deploy extra weights for architectures seen during training.

5The performance drop in Fig. 4 may stem from the facts that the 500 used architectures are randomly
sampled and we perform only uniform ensemble instead of weighted ensemble. Thus assembling more base
learners may not give rise to rigidly better predictions.

6

75 80 85 90 95
0

10

20

30

40

50

60

70 Seen architectures
Unseen architectures

(a) S = 5

95.0 95.5 96.0 96.5
0

2

4

6

8

10

12
Seen architectures
Unseen architectures

(b) S = 50

95.4 95.6 95.8 96.0 96.2 96.4
0

2

4

6

8 Seen architectures
Unseen architectures

(c) S = 500

95.25 95.50 95.75 96.00 96.25 96.50
0

1

2

3

4

5

6

7 Seen architectures
Unseen architectures

(d) S = 5000

Figure 5: The histograms for the validation accuracy of 100 architectures seen during training vs. those for 100
unseen architectures, tested on the trained NSA-i models with different training space sizes.

the ones used for training. When the training space is too narrow (e.g., S ≤ 50), the network behaves
distinctly over the two classes of architectures, ruling out the generalization across architectures.

An alternative to quantitatively analyze the generalization capacity of NSA-i is to check whether
we can distinguish the seen architectures from the unseen ones w.r.t. their validation accuracy.

Table 1: The change of the AUC, which mea-
sures the differentiability between the seen ar-
chitectures and unseen ones given the validation
accuracy, w.r.t. the training space size S. We
also report the average accuracy of the seen and
unseen architecture for reference.

S AUC Avg acc. (seen) Avg acc. (unseen)
5 1.00 96.57% 91.81%

50 0.77 96.47% 96.23%
500 0.57 96.16% 96.12%
5000 0.52 96.01% 96.01%

A golden metric to estimate the goodness of a classifier
on such a binary classification task is the Area under
the ROC Curve (AUC). Thus, we report the AUCs of
the trained NSA-i models in Table 1. We also report
the average accuracy of the seen architectures and the
unseen ones for reference. Consistent with the his-
tograms, with the training space increases, it is harder
to differentiate these two classes of architectures w.r.t.
validation accuracy; when S ≥ 500, almost any binary
classifier randomly guesses, given the near 0.5 AUCs.
Meanwhile, we also notice that the average validation
accuracy of seen architectures decreases slightly.

These results validate the generalization capacity of NSA, perhaps because the shared weights learn
common structures of the architectures. As shown, we can train a NSA with a suitable number of
architectures (e.g., [500, 5000]) to conjoin architecture generalization and accuracy. We hope that
this may also serve as an insightful heuristic for training weight-sharing proxy networks in NAS.

5 Applications of NSA

Given the potential of NSA to unleash the predictive capacity of diverse architectures during inference,
in this section, we apply NSA to a variety of tasks ranging from ensemble learning, uncertainty esti-
mation, to semi-supervised learning, which is unexplored in previously works. As discussed, we take
WRN-28-10† as a main baseline, for its identical settings with NSA and the strong competitiveness
of residual connections [12, 49]. As a note, NSA leverages stochastic architectures for inference,
consistent with the empirical Bayes methods, e.g., Monte Carlo (MC) dropout [7]. Thus, we take MC
dropout built upon WRN-28-10† as another baseline.

Hyper-parameter setting. We enable the architecture conditional BNs in the following experiments.
We empirically found that using more than 10 architectures in training frequently results in worse
validation results, possibly due to the incomplete training of the redundant weights in BNs, as
explained in Sec. 4.1. Therefore, we use S = 5 randomly sampled architectures for training and
inference. To further facilitate the convergence of the shared weights, we deploy an auxiliary classifier
following [22] with 0.1 loss coefficient (also deployed in the baselines). We apply standard data
processing and CutOut augmentation [5]. The optimization settings follow WRN-28-10 [49].

5.1 Model Ensemble with Stochastic Architectures on CIFAR-10 and CIFAR-100

As shown in Sec. 4.1, there is evidence to suggest that ensemble the predictions from different
architectures does boost the validation performance, consistent with the common knowledge [18],
so we continue evaluating this technique on the more expressive NSA-id models with conditional
BNs used. For the results of NSA-id, as stated, we use S = 5 architectures for training and ensemble

7

Table 2: Comparison of NSA-id, using ensemble of 5 different architectures for prediction, and a range of
competing baseline, in terms of test error and ECE. ENAS and DARTS adpot the parameter-efficient separable
convolutions and apply re-training to get the results.

Method # params CIFAR-10 CIFAR-100
Test error (%) ↓ ECE ↓ Test error (%) ↓ ECE ↓

WRN-28-10 [49] 36.5M 4.00 - 19.25 -
DenseNet-BC [14] 25.6M 3.46 - 17.18 -

ENAS + CutOut [30] 4.6M 2.89 - - -
DARTS + CutOut [22] 3.4M 2.83 - - -

WRN-28-10† 39.5M 2.93 0.0140 16.75 0.0672
WRN-28-10†, MC dropout 39.5M 3.23 0.0107 17.16 0.0454

Average of individuals 39.5M 2.97 0.0153 17.02 0.0446
NSA-id 39.6M 2.75 0.0032 16.44 0.0212

all of them for test (i.e., T = 5). For WRN-28-10† with MC dropout, we predict one data for 100
times with randomly sampled dropout masks and assemble them. We implement a further baseline:
Average of individuals, in which we individually trains 5 networks with the 5 architectures used by
NSA-id, and report their average results, to present the average performance of the used architectures,
rather than their ensemble as comparing that to NSA-id is unfair given the need of 5× training costs.

We report the results in Table 2. In both tasks, NSA-id surpasses the strong baselines with clear
margins. The 2.75% error rate on CIFAR-10 is rather promising considering the wide convolution
based backbone. Notably, the comparison between NSA-id and Average of individuals confirms that
ensembling multiple architectures leads to improved performance over a single architecture, despite
using shared weights6. These results also prove the ER-0.3 model provides a good architecture space.

We also detail the model calibration, which is another major concern of classification model, in
Table 2. Following [10], we take expected calibration error (ECE) as a measure of calibration.
Surprisingly, NSA-id shows lower ECE than the strong, principled baseline MC dropout with huge
margins. We think this results from the fact that different architectures offer relatively diverse
predictions in NSA-id, alleviating the over-confidence, while MC dropout is known to suffer from
mode collapse [18], and hence cannot benefit too much from prediction ensemble.

5.2 Uncertainty Estimation

In NSA-id, the architecture stochasticity results in the predictive uncertainty, permitting us to regard
NSA-id as an empirical Bayes method. In this section, we assess the uncertain estimates provided
by NSA-id. Suggested by [34], we adopt the mutual information (MI) between the prediction of
incoming data and the model parameters as the uncertainty measure, namely, I(w,α, y|D, x) ≈
H[1T

∑T
i=1 p(y|x;w,αi)]− 1

T

∑T
i=1H[p(y|x;w,αi)], whereH is the entropy, and T = 5 as stated.

We test the uncertainty estimates on two challenging kinds of samples: out-of-distribution (OOD)
ones and adversarial ones. The models to evaluate are trained on CIFAR-10, and OOD samples refer
to the test data of SVHN. For the adversarial samples, we use the frequently adopted, performant
Projected Gradient Descent (PGD) [25] to craft. In practice, we first calculate the MI of normal
test samples and OOD (or adversarial) ones, then we compute and report the AUC of the binary
classification of directly distinguishing the normal ones (class 0) from OOD (or adversarial) ones
(class 1) based on the MI. The underlying notion is that OOD (or adversarial) samples commonly
deviate from the manifold of normal ones, thus have high uncertainty. As shown in Table 3, NSA-id
consistently displays improved uncertainty estimates than the golden baseline WRN-28-10† with MC
dropout. Also of note that, NSA-id shows stronger adversarial robustness against PGD attack.

5.3 Semi-supervised Learning

At last, we use NSA-id to perform semi-supervised classification on CIFAR-10, using only 4000
labeled data. The notion of applying NSA-id into such a scenario is that with the uncertainty estimates
provided by NSA-id, we can minimize the predictive uncertainty (i.e., the aforementioned mutual in-
formation) of unlabeled data, to assist the learning with the labeled data. The uncertainty minimization

6As a note, the ensemble of the 5 aforementioned individuals yields striking 2.36% error rate on CIFAR-10,
confirming that weight sharing is a main cause of mode collapse.

8

Table 3: Comparison between NSA-id and MC dropout in terms of the quality of uncertainty estimates. PGDa-b-c
represents the PGD adversary with perturbation budget a/255, number of steps b, and step size c/255.

Method OOD PGD1-2-1 PGD2-3-1 PGD3-4-1
AUC ↑ Acc. ↑ AUC ↑ Acc. ↑ AUC ↑ Acc. ↑ AUC ↑

WRN-28-10†, MC dropout 0.935 0.622 0.735 0.345 0.694 0.183 0.564
NSA-id 0.970 0.630 0.737 0.401 0.705 0.263 0.618

is achieved by optimizing a consistency loss: Lunlabeled =
∑

i ||p(y|xuni ;w,αi)−p(y|xuni ;w,α′i)||22,
where xuni denotes the ith unlabeled data, and αi and α′i are two randomly sampled architectures.
In practice, we use the distance between output logits instead of that of probabilities. We set the
coefficient of consistency loss to be 20, following an anneal schedule [17]. After training, we as-
semble the predictions of different architectures for final prediction. We implement two baselines:
(i) WRN-28-10† with Π model [17], which works the same as NSA-id expect for using dropout
to provide twice predictions for one data; (ii) WRN-28-10† trained with only labeled data. The
validation accuracy of NSA-id and the two baselines are 86.96%, 85.22%, and 83.87%, respectively.
NSA-id outperforms Π model, perhaps because the architecture stochasticity can explore more diverse
predictions across decision boundaries, thus penalizing the inconsistency between the predictions of
unlabeled data would drive the decision boundaries to be more robust.

6 Related Work

Randomizing certain parts of DNNs is usually indispensable to prevent the trained model from over-
fitting, over-confident, and co-adaptation [35, 39, 19, 8, 21]. But existing stochastic regularizations
are commonly applied locally upon the network weights or the hidden feature maps, which is argued
to be less effective than globally regularizing the behaviour of the model [4], as done in NSA. Besides,
these stochastic regularizations are usually turned off in inference phase, while NSA predicts with
stochastic architectures and benefits from such stochasticity. A more principled approach to include
stochasticity is Bayesian Neural Networks (BNNs) [24, 28, 9, 2, 23, 7], which place uncertainty upon
network weights and measure predictive uncertainty given Bayesian theorem. But BNNs are known
to suffer from mode collapse [18] and training challenges [50], hence not popularly used in practice.

In neural architecture search (NAS) [52, 53, 31, 30, 22, 45, 3, 44, 37], tremendous efforts have been
devoted to discovering performant architectures in a broad yet structured architecture space. For
computationally feasible search, it is common to train a network with stochastic architectures to
enable the evaluation of ample architectures given shared weights. But almost all NAS works ignore
to analyze the properties of such a network, e.g., the convergence, training stability, and generalization
to unseen architectures, which are of central importance in NAS. In this work, we uncover these
un-identified aspects, and provide novel insights for how to train a better NSA in NAS.

7 Conclusion

In this work, we aim at understanding the properties of the network with stochastic architectures, and
applying such a network in more extensive and suitable scenarios. Firstly, we reveal un-identified
training and test properties of NSA. We observe two issues, training/test disparity and mode collapse,
of NSA, which are ignored by previous works, and propose two novel approaches to address them.
We further provide valuable insights on how to train a NSA, hopefully benefiting NAS. At last, we
apply NSA into three appropriate scenarios to sufficiently exploit its potential and see good results.

9

Broader Impact

This work manages to understand a wide range of properties of the network with stochastic archi-
tectures (NSA), and apply it to several challenging tasks to sufficiently exploit its potential. It has
the following positive impacts in the society. First, as NSA is a broadly used technique in neural
architecture search (NAS), our analyses can provide valuable insights for the following research on
NAS. Second, the proposed improvements upon NSA are practically applicable, and NSA with such
improvements has shown promise in various scenarios such as ensemble learning and semi-supervised
learning. Third, as the architecture stochasticity can be leveraged to provide uncertainty estimates
during inference, NSA has a potential to be used in practical applications where the uncertainty
measures are crucial, such as finance, automatic driving, etc. At the same time, this work may have
some possible negative consequences. For example, just like other NAS works, it would enable
searching better neural architectures automatically, which may potentially result in job loss of many
researchers and engineers in the future.

Acknowledge

This work was supported by the National Key Research and Development Program of China
(No.2017YFA0700904), NSFC Projects (Nos. 61620106010, U19B2034, U1811461), Beijing
Academy of Artificial Intelligence (BAAI), Tsinghua-Huawei Joint Research Program, a grant from
Tsinghua Institute for Guo Qiang, Tiangong Institute for Intelligent Computing, and the NVIDIA
NVAIL Program with GPU/DGX Acceleration.

References
[1] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding

and simplifying one-shot architecture search. In International Conference on Machine Learning, pages
550–559, 2018.

[2] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
networks. arXiv preprint arXiv:1505.05424, 2015.

[3] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task and
hardware. arXiv preprint arXiv:1812.00332, 2018.

[4] Zhijie Deng, Yucen Luo, Jun Zhu, and Bo Zhang. Dbsn: Measuring uncertainty through bayesian learning
of deep neural network structures. arXiv preprint arXiv:1911.09804, 2019.

[5] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552, 2017.

[6] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1):
17–60, 1960.

[7] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pages 1050–1059, 2016.

[8] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization method for convolutional
networks. In Advances in Neural Information Processing Systems, pages 10727–10737, 2018.

[9] Alex Graves. Practical variational inference for neural networks. In Advances in neural information
processing systems, pages 2348–2356, 2011.

[10] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1321–1330.
JMLR. org, 2017.

[11] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single
path one-shot neural architecture search with uniform sampling. arXiv preprint arXiv:1904.00420, 2019.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[13] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 7132–7141, 2018.

10

[14] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4700–4708, 2017.

[15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[16] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

[17] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016.

[18] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in neural information processing systems, pages
6402–6413, 2017.

[19] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural networks
without residuals. arXiv preprint arXiv:1605.07648, 2016.

[20] Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, and Dhruv Batra. Why m heads are
better than one: Training a diverse ensemble of deep networks. arXiv preprint arXiv:1511.06314, 2015.

[21] Senwei Liang, Yuehaw Khoo, and Haizhao Yang. Drop-activation: Implicit parameter reduction and
harmonic regularization. arXiv preprint arXiv:1811.05850, 2018.

[22] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

[23] Christos Louizos and Max Welling. Multiplicative normalizing flows for variational bayesian neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
2218–2227. JMLR. org, 2017.

[24] David JC MacKay. Bayesian methods for adaptive models. PhD thesis, California Institute of Technology,
1992.

[25] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. In International Conference on Learning
Representations (ICLR), 2018.

[26] Takeru Miyato and Masanori Koyama. cgans with projection discriminator. arXiv preprint
arXiv:1802.05637, 2018.

[27] Jerome L Myers, Arnold Well, and Robert Frederick Lorch. Research design and statistical analysis.
Routledge, 2010.

[28] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business Media,
2012.

[29] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robustness via promoting
ensemble diversity. arXiv preprint arXiv:1901.08846, 2019.

[30] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture search
via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

[31] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le,
and Alexey Kurakin. Large-scale evolution of image classifiers. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 2902–2911. JMLR. org, 2017.

[32] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4510–4520, 2018.

[33] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[34] Lewis Smith and Yarin Gal. Understanding measures of uncertainty for adversarial example detection.
arXiv preprint arXiv:1803.08533, 2018.

11

[35] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014.

[36] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[37] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V Le.
Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2820–2828, 2019.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[39] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural networks
using dropconnect. In International conference on machine learning, pages 1058–1066, 2013.

[40] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender systems. In
Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining,
pages 1235–1244, 2015.

[41] Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. arXiv preprint arXiv:2002.08791, 2020.

[42] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter
Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 10734–10742, 2019.

[43] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transforma-
tions for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1492–1500, 2017.

[44] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring randomly wired neural
networks for image recognition. In Proceedings of the IEEE International Conference on Computer Vision,
pages 1284–1293, 2019.

[45] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search. arXiv
preprint arXiv:1812.09926, 2018.

[46] Jiahui Yu and Thomas S. Huang. Universally slimmable networks and improved training techniques. In
2019 IEEE/CVF International Conference on Computer Vision, pages 1803–1811. IEEE.

[47] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas S. Huang. Slimmable neural networks. In
7th International Conference on Learning Representations. OpenReview.net, 2019.

[48] Kun Yuan, Quanquan Li, Yucong Zhou, Jing Shao, and Junjie Yan. Diving into optimization of topology in
neural networks, 2020. URL https://openreview.net/forum?id=HyetFnEFDS.

[49] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

[50] Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural gradient as variational
inference. arXiv preprint arXiv:1712.02390, 2017.

[51] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 6848–6856, 2018.

[52] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

[53] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8697–8710, 2018.

12

https://openreview.net/forum?id=HyetFnEFDS

	Introduction
	NSA: Network with Stochastic Architectures
	Training/test Disparity of NSA
	Inference-time Properties of NSA
	Mode Collapse of Diverse Architectures
	Generalization Capacity to Unseen Architectures

	Applications of NSA
	Model Ensemble with Stochastic Architectures on CIFAR-10 and CIFAR-100
	Uncertainty Estimation
	Semi-supervised Learning

	Related Work
	Conclusion

